

Avantage Datasystem version 5

Andy Wright Chinese Users Meeting 2014

Contents

Introduction
Avantage version 5
Interface
Features and Functions
Data processing examples
Multilevel data sets
XPS Images
Depth profiles
ARXPS

Language Support

The Avantage datasystem

- A modern Windows application
 - Covers entire Thermo Scientific XPS product range
 - NEW! Version 5: Windows 7 (acquisition & processing) Windows XP (processing only)
 - Familiar and consistent interface across all systems
 - Designed for multi-level datasets
 - Multi-technique support
 - Advanced Sample to Report workflows
 - Automated calibration tools

Overview

Avantage v5 – Powerful Features, Easier to Find

Report Generation

Auto analysis

- Generation of 1st pass reports
 - Based on auto ID of survey spectrum
 - Automated report compilation
 - Survey & narrow scan data
 - Experimental acquisition parameters
 - User comments
 - CCD image and analysis position information
 - Peak ID and quantification table
 - Chemical state appraisal table

• Now available for E250Xi & ThetaProbe

Auto Analysis

The Method

Thermo Fisher

Full recipe generation

Experiment Setup

- Advanced experiment object
 - Acquisition
 - Predefined acquisition of
 - Points
 - Linescans
 - Iterations
 - Mapping
 - Depth Profiles
 - Processing
 - Full processing options
 - Peak ID, Add and Quantification
 - Peak Synthesis
 - Multi- sample point & level batch processing
 - Re-use tried and tested parameters
 - Reporting
 - Export to 3rd party software
 - Word, Powerpoint, Excel etc.

Full recipe mode of operation

Automation of coating thickness measurement

Thermo Fisher SCIENTIFIC

Full recipe mode of operation

Thermo Fisher SCIENTIFIC

- Output format
 - Excel, word etc..
 - Export to predefined template documents
 - Additional processing from via excel macros

- Avantage
 - supports automated instrument calibration
- Performance confidence
 - completely calibrated and ready for use
- Ease of use
 - Sequential steps ensures calibrations are completed in correct order
- Traceability
 - Full calibration and performance history available
 - Date and status of last calibration recorded

Calibration		
StartUp Camera Sources Spectrometer Specifications Troubleshooting	Help Performance Status Diagnostics	
Procedure Date	1.80E+06 _T	
✓ Detector Efficiency 12-Aug-08 10:07 ✓ Spectrometer Lens Setup 12-Aug-08 10:52 ✓ Mag Trim Setup 12-Aug-08 11:03	1.60E+06	•
Detector SpanDiffset 14-Aug-08 12:33 Detector Signature	1.40E+06-	
Spectrometer Energy Scale Transmission Function	1.20E+06	
Spectrum PSF	▲ + + + + + + + + + + + + + + + + + + +	
	6.00E+05-	
	4.00E+05-	
Run Reset O Reset	2.00E+05	
Selected ALL Test Test Test	0.00E+00 0 100 200 300	400
Estimated Time Remaining:	Spot Size 7 um	
Progress	FWHM 400um spot = 0.91 e∨ FWHM (<= 0.5e∨) = 0.48 e∨ Data Acquired 08/08/2008 13:39	
Status		Copy Chart

Automated Instrument Calibration Detector, Lens, Analyser optimisation

- Calibration standard reference materials kept under vacuum in K-Alpha, and on standard block for 250Xi
- Single click for entire energy scale calibration
- Rapid, completed < 10 mins
- Traceability calibration history log recorded

Repeat process to confirm within tolerance

- Maximum error in 9 months 33meV
- Full calibration record available on each tool

lon gun setup

- Ion gun auto set-up
 - Optimum and calibrated beam current and focus
 - Optimizes all modes 100-3keV
 - Auto-detect centre of current map
 - Excellent Alignment with XPS analysis position for depth profiling
 - Standard size apertures permanently mounted on stage in vacuum
 - Excellent tool matching repeatability
 - Consistent sputter rates

Microscope image of aperture

Sample current map through aperture

ESCALAB 250Xi

• E250Xi platter camera (option)

- Sample platter camera option on E250Xi allows users to locate samples/features quickly and with confidence. Improves efficiency and ease-of-use
 - Photographic record of sample analysis
 - Captures an image of sample block prior to loading into the system
 - Calibrated sample image can be used to navigate from sample to sample, with simple mouse clicks

Thermo Fisher

Remote Access

Avantage Indexer

🚇 Avantage Indexer												
Title/Region C1s File Name or Path				Acquisiti O Scar	on Mode	SnapShot (Both	_ Floo	d Gun On	\bigcirc		
Data Acquired Between Dates Start 11/07/2011 C End 11/07/2011 C												
Title	Subject/Project	Comment	Date Acquired	Acq. Mode	Ion Gun Energy	FG On	Spot Size	Pass Energy	Curre	nt Path		^
C1s Scan	Open All Files				0	True	400	50	с:\ар	plicationsWolca	ano\Ey 3.DATA\C1s Sca	<u>_</u>
C1s Scan	Open Air Lies				0	True	400	50	с:\ар	plicationsWolca	ano\Ey 3.DATA\C1s Sca	n_1
C1s Scan	Open Biles in the sa	ma directory			0	True	250	50	с:\ар	plicationsWolca	ano\Eyall 1.DATA\C1s S	can.
C1s Scan	Open all related file	r (acquired at the cam	e time + processed	data)	0	True	250	50	с:\ар	plicationsWolca	ano\Eyall 1.DATA\C1s S	an
C1s Scan	Show all related file	s (acquired at the sam	e time + processed	data)	0	True	250	50	с:\ар	plicationsWolca	ano\Eyall 1.DATA\C1s S	;an_
C1s Scan		s (acquired at the sam	11/10/2010 14.0	ocarineu <mark>Ope</mark>	n files from the sam	ne experim	ent run	50	с:\ар	plicationsWolca	ano\Eyall 2.DATA\C1s S	san.
C1s Scan	20101011		11/10/2010 14:0	Scanned	0	True	250	50	с:\ар	plicationsWolca	ano\Eyall 2.DATA\C1s S	;an_
C1s Scan	20101011		11/10/2010 14:0	Scanned	0	True	250	50	с:\ар	plicationsWolca	ano\Eyall 2.DATA\C1s S	oan_
C1s Scan	20101011		11/10/2010 15:1	Scanned	0	True	400	50	c:\ap	plicationsWolca	ano\Kerid 1.DATA\C1s S	can
C1s Scan	20101011		11/10/2010 15:1	Scanned	0	True	400	50	c:\ap	plicationsWolca	ano\Kerid 1.DATA\C1s S	can
C1s Scan	20101011		11/10/2010 15:1	Scanned	0	True	400	50	c:\ap	plicationsWolca	ano\Kerid 1.DATA\C1s S	can
C1s Scan	20101011		11/10/2010 15:3	Scanned	0	True	400	50	c:\ap	plicationsWolca	ano\Kerid 3.DATA\C1s S	can
C1s Scan	20101011		11/10/2010 15:3	Scanned	0	True	400	50	с:\ар	plicationsWolca	ano\Kerid 3.DATA\C1s S	can
C1s Scan	20101011		11/10/2010 15:3	Scanned	0	True	400	50	с:\ар	plicationsWolca	ano\Kerid 3.DATA\C1s S	can
C1s Snap	20100611		11/06/2010 11:1	SnapShot	500	False	200	151.18110	c:\		· · · · · · · · · · · · · · · · · · ·	
C1s Snap	20100611		11/06/2010 10:2	SnapShot	500	False	200	151.18110	c:\c	Find	atch h	
C1s 250um	20110202		02/02/2011 22:3	Scanned	0	False	900	60	c:\l		<i>i</i> uata	
C1s 250um - Ave	. 20110202		02/02/2011 22:3	Scanned	0	False	900	60	c:\l	<u> </u>		
C1s Snap	20110413a		13/04/2011 16:3	SnapShot	500	True	200	151.18110	c:\l	eas	ny an <u>c</u>	
C1s Snap	20110414a		14/04/2011 16:1	SnapShot	500	True	200	151.18110	c:\l	•		
C1s Snap	20110419		19/04/2011 17:3	SnapShot	500	True	200	153.00123	c:\l	Imp	ort stra	910
C1s Snap	20110420		20/04/2011 19:5	SnapShot	500	True	200	151.18023	c:\l			3
13294 files found												- 9

Data processing functions

Backgrounds & Spectral Improvements

Smart backgrounds

Ta4f Depth Profile Data

CIENTIFIC

21

Spectral Deconvolution

- Spectral Deconvolution
 - Removal of analyser contribution
 - Jansson's method
 - PSF calculated from Ag standards
- Benefits
 - Reduced acquisition times
 - Reduced sample degradation
 - Improved signal to noise
 - Improved chemical state determination

Spectrum deconvolution

- PSFs for spectral deconvolution are calculated from spectra acquired from a standard (e.g. Ag3d) at a range of pass energies.
- These are used as the basis of an equation describing the response at any given pass energy
- These can then be applied to scanned or snapshot data to improve energy resolution.

Energy Deconvolution				
Deconvolution Algorithm No. of iterations Jansson C Richardson-Lucy 100				
PSF Source				
• Dataspace				
C New Registry Calibrate				
C PSF File Load File				
C Old Registry				
Effective Pass Energy for 20 Apply				
PSF HWHM Left: 0.576192 Right: 0.417831				
Deconvolve Display Level Accept				
Deconvolve All Levels Cancel				

Spectrum deconvolution

- Aim to reduce total acquisition time
- Acquire snapshot data at high PE
- Convert high PE data to simulate low PE data
- Factor of 10 improvement in acquisition time
- Ideal for mapping, depth profiling and delicate samples

Data Resampling

- Sometimes we acquire too many data points oversampling.
- Resampling allows us to correct oversampling
- Also permits interpolation of data sets in case of undersampling
- Works for spectra, images, profiles...

🛦 Thermo Avantage	
File Edit View Window Help	
🚹 Analysis 🛛 Compare/Overlay 🔥 Modify 🖵 Profile ‡ Arithmetic 🛎 Image 👭 Util	ittes 🖉 Angle Resolved XPS
🚎 🔁 🐁 📸 🥶 🗰 🗰	Resample Data
Resample Data	Selected Axis
S3 250 um Sp Coated C60001 DP Processing View Processing View: #2 ×	Etch Time, Etch Level, 400 Points
	Axes details for first selected data file Etch Time: Start=0 s End=4090.82 s (non-linear) Range=4090.82 s
	Etch Level: Start=0 End=399 Step=1 Range=399
	Sampling Method Sampling Step
	Simple (Pick) Z
	Bilinear Number Of Points
	Bicubic Current 400 Cancel
	Gaussian Width in data steps 1.0 New 200

Data Resampling – Depth Profile

Data Resampling – XPS Image

S C Ι Ε Ν Τ Ι F Ι C

– Data processing examples

Reviewing multi-level datasets

Target factor analysis

Target factor analysis

- Most significant components selected using TFA
- Data set fitted with significant levels
- Poorly fitted levels added as significant components
- Process continues until all levels fit below signal to noise limit

User defined parameters

- Fit range
- Background shape
- Signal averaging for background points
 - Improves background selection for noisy data
- Signal to noise ratio
 - Adjust the sensitivity of the process

TFA Contr			
lterations Converg:	. 3 0.1		
Start, eV	298.21	 End, e∨	278.21
End point a	verage, eV	1.00	
Signal to no	ise ratio	3	_
#	Level	Rank	Signal/Noise
*			
Start TI	A	Close	Accent

Non linear least squares fitting

Non Linear least squares fitting **NLLSF Control Dialog** User can select reference levels Entire data-set fit with reference levels NLLSF Fit Display Reference levels can by 6000₁ Synthetic data Synthetic Peaks Real data Data from within the data set 50001 NLLSE Area Profiles Library reference spectra Possible to combine synthetic and real references 3.00E+04 Area (CPS*eV) Merged references for doublets User Defined parameters 2.00E+04 Al2p Oxide Fit range Al2p Metal 1.00E+04 Background shape Signal averaging for background points 0.00E+00 Improves background selection for noisy data 10 30 20 40 Non linear components Total shift Etch Level 80 78 16 (4 72 70 Shift increment Merge selection Binding Energy (eV) Start NLLSF Close Accept

Peak fitting at every level

Peak

BE

Rel Name

Al2p1

Al2pOx

A Al2p3

B

C

Data

- Full fitting parameter control
 - Fix values
 - Link parameters
 - Set ranges
 - Asymmetric peaks
 - Add doublets
- Parameter & constraint management
 - Propagate values and constraints
 - Define data space ranges
- Recipes and automation
 - Save and load peak tables
 - Peak fitting within expt. tree

The world leader in serving science

Point XPS Analysis

Parallel XPS Imaging

Parallel Imaging – 3 Modes of Operation

- There are three possible imaging modes
 - Peak only
 - Peak Background
 - Full Spectrum
- Each has distinct advantages
- Time vs. Information trade-off

Image-Defined Area Selection

For image-defined area selection we acquire quantitative spectral image sets.

This is a sequence of images spanning a spectral region of interest. The result is an image with a spectrum at each pixel.

Any rectangular area can be selected from the image to generate average spectra from that area.

Real-Time Imaging For Alignment

Alignment for selected area XPS using lens-defined analysis is straightforward with real-time parallel XPS imaging. The Spectrometer Control (red box) can be used to start imaging a peak of interest using any chosen instrument parameters. The Current Data View (blue box) then updates continuously (usually every 1-2 seconds) with a live XPS image of the sample. The live camera view (green box) allows fine changes in stage position to centre a feature of interest in the image, either by using the move arrow buttons or by double-clicking within the camera image.

S C Ι Ε Ν Τ Ι F Ι C

37

Real-Time Imaging For Alignment

Once a feature is centred, the analysis area can be chosen using the aperture control (red box). This lets the user close the field of view iris until the analysis area is within the feature of interest. The live image updates to show the iris closing, so that the size and location of the analysis area is precisely known. Small-area XPS can then be performed using the same iris settings, so that the analysis area is exactly the same as in the image.

Thermo Fisher

CO₂ Treated catalyst XPS Imaging Example

- Dispersed catalyst grains were studied
- Parallel imaging technique, 250 µm FOV
- Quantitative spectral imaging data
- Sequences of images in small energy steps across each peak.
- Images with a quantifiable spectrum at each pixel.
- The images were acquired with an analyser pass energy of 60 eV and an energy step between images of 0.2 eV. Each image sequence was acquired for 10 scans (8 for Si2p). Therefore each single-energy image was acquired for about 20 seconds.

C:\E250XI\3050 UFBA\20110228\Run 3\Mono 900µm\S4 68 img\OpticalView.vgd

- Acquisition Regions
 - Si2p
 - 01s
 - C1s
 - Fe2p
 - Ni2p

- A zoomed-in portion of the optical view shows the particles at the analysis position
- One of the particles at the centre is brown,
 - •The other is white.
 - Do these particles have a different surface composition?

- As an example, some of the O1s spectral image data
- 60 images were acquired in total, from 525-537 eV binding energy, in steps of 0.2 eV.
- The spectrum shown generated by averaging spectra from all 16384 pixels in the image set
- Represents the total O1s spectrum with no spatial information left.
- Five images from the set are shown below, with arrows showing the binding energy they correspond to. The middle three show varying intensities on the particles as the binding energy changes. This demonstrates that the two particles have different oxygen chemistries.

(C1s)

100

Image X (µm)

•The data sets were quantified to generate atomic % images of the sample, shown here. These show two particles fully within the imaged area, one large and one small. The approximate outlines of the particles are shown on the Si2p image.

 The Si2p image shows both particles with similar signal intensity.

 O1s shows a stronger signal from the small particle.

0

50

(Im) 100 J 150

200

 Fe2p and Ni2p3 show a stronger signal from the larger particle.

 This indicates that the smaller particle has lower concentrations of metallic species at the surface •Does this explain the colour change?

S C Ι Ε Ν Τ Ι F Ι C

- Rectangular areas were defined on the at.% images (shown on the Si image below left), and the spectra from all pixels within those areas were averaged together. A comparison of spectra from the large particle (red) and small particle (green) shows that the small particle has virtually no Fe or Ni, and increased C and O (and a small increase in Si).
- On the large particle, the O1s spectrum shows a clear metal oxide peak to low binding energy, but that is weak or missing from the small particle.

- The principal component analysis (PCA) algorithm was applied to the O1s spectral image set. This identified two factors, shown right. The second (green) factor is dominated by metal oxide chemistry, whereas the first (red) is more typical of Al and Si oxides, and organic material.
- The two factors were then fitted back into the original data to plot the distributions of the two chemical states. An example of this is shown far right, with the two factors fitted to one of the spectra from a single pixel in the image set. One strength of PCA is clear here the factors identified in the process have much better signal statistics than any single spectrum in the data set. This is due to the PCA function using the entire data set to identify signals and reduce noise.
- After fitting the PCA factors to the data, the atomic % images presented earlier were regenerated, including the two O1s states.
- The O1s images are shown below. PCA 1, the "other" oxygen, is on both particles but is stronger on the smaller one. PCA 2, the metal oxide, is only strong on the large particle. The different distributions of the two states are clear from the PCA analysis.

CO₂ Treated spent catalyst: Phase analysis Result

- For further detail, the Phase Analysis algorithm was used, which applies principal component analysis (PCA) to the quantified compositional information at each pixel. This effectively looks for areas of similar composition in the sample
- The phase analysis algorithm identified three compositional phases as shown in the phase image here.
- The first phase (red) is the surrounding carbon tape.
- The second phase (green) is all particles within the image.
- The third phase (blue) highlights the brown coloured particles, but not the smaller white particle.

Overlayed Interpolated Phases (Overlayed Image) 10 Scans, 20.0 s, 900µm, CAE 60.0, CAE 60.0

The phase analysis routine generates average spectra from each phase, by combining the spectra from all of the red, green and blue pixels. These are shown here, together with the compositional information from these average spectra.

Average Atomic %

Average spectra were generated from rectangular areas on the large (red) and small (green) particles as before. The spectra are shown here. These have been quantified to give the composition tables below. This data shows that the white particle does have a small amount of Fe and Ni, and has a similar amount of V to the brown particle.

Peak	BE/eV	At. %
Si2p	102.9	16.68
C1s	284.6	23.32
V2p3	516.3	0.24
01s	532.0	55.93
Fe2p	710.7	2.26
Ni2p3	855.4	1.57
Peak	BE/eV	At. %
Peak Si2p	BE / eV 103.0	At. % 17.42
Peak Si2p C1s	BE / eV 103.0 284.6	At. % 17.42 32.72
Peak Si2p C1s V2p3	BE / eV 103.0 284.6 517.1	At. % 17.42 32.72 0.18
Peak Si2p C1s V2p3 O1s	BE / eV 103.0 284.6 517.1 532.0	At. % 17.42 32.72 0.18 49.13
Peak Si2p C1s V2p3 O1s Fe2p	BE / eV 103.0 284.6 517.1 532.0 712.4	At. % 17.42 32.72 0.18 49.13 0.21

Depth profile deconvolution

- Corrects for sampling depth
- Using Briggs and Seahs equation

 $\langle (z) = I(z) - d(I)/dz * \lambda$ eq. (4.9) on p155 of Briggs and Seah

- Attenuation length is calculated using an "Average Matrix"
- Simple fast implementation
- Improves resolution of ultra shallow profiles
- Resolves discrete interface layers

Depth profile deconvolution

SiOxNy/Si Profile

Resolves discrete layers

Improves depth resolution

PCA depth profile analysis

•Survey depth profiling is a method which captures all XPS-detectable elements during a depth

•It is not necessary to know all of the potential elements in the composition profile prior to analysis

•Only feasible with high sensitivity XPS system, combined with rapid-response electronics/software for data collection

•Above example is K-Alpha survey depth profile of a hard disk

•Survey spectra at each profile level have only 9s acquisition time and total time to substrate is only 100 mins

•All elements within the disk have been detected

•Avantage datasystem allows collection of survey spectra to be viewed as an "image", which can then be directly correlated with the layer structure of the hard disk

The world leader in serving science

Relative Depth Plot

Provides Information about layer ordering

- Construction:
 - Collect ARXPS spectra
 - For each element, calculate:

- Information
 - Reveals the ordering of the chemical species
- Advantages
 - Fast
 - Model independent, no assumptions
- Limitation
 - No depth scale

 Relative depth plot from silicon oxynitride shows:

AI 2p

Hf 4f

O 1s (High BE)

D1s (Low BE)

- C at surface
- Two N species each with different depth distributions
- Si substrate

Surface

Bulk

Si 2p (Ox)

2p (El)

ŝ

Single Overlayer Model

- Information depth varies with collection angle
 - I = I $\stackrel{\infty}{=} \exp(-d/\lambda \cos\theta)$

- Signal from A
 - $IA = I_{A}^{\infty}[1 \exp(-d/\lambda_{A,A}\cos \theta)]$
- Signal from B
 - $I_B = I_B^{\infty} \exp(-d/\lambda_B, A\cos\theta)$
- Ratio

- Simplify
 - If $I_{A,A} = I_{B,A} = I_A$
 - Then
 In[1+R/ R₀] = d/(λ_A cosθ)

Multi-Overlayer Calculator

Depth Profile Generation

Non-destructive depth profiles can only be generated using an iterative method

ARXPS Suite

- Built in TPP-2M calculator
- Fit up to three layers on a substrate
- Built in materials database
- Select angular range
- Recipe operation

Multi-Overlayer Calcula	tor 🛛 🔀					
Maximum Angle 59.38° ▼	Instrument ThetaProbe Xrays Al C Mg					
Name SAM3	Save New CÅ					
Layer data						
Number of layers 1 © Overlayer 1	XPS Peak Chemical Formula Use Calculated Depth C1sTotal C17H35045 1.53					
2 C Overlayer 2 3 C Overlayer 3						
Substrate	Electron Attenuation Material Properties					
Navigator	Graph Calculate Cancel					
10 1						
℃ 1 C1sTotal/Au4f						
0.1	40 50 60 Ø					

ARXPS Suite

- Maximum entropy calculations
- Non-destructive profiles from ARXPS
- Fit with chemical units
- Recipe mode

Samples and images provided by Asemblon Inc.

Language Support

- Avantage v1 v5 released in English Language only
- Coming soon multiple language support

Workspace Preferences	×
 □ Preferences □ Conversion Preferences □ Experiment Preferences □ Processing Preferences □ UI Preferences □ UI Preferences □ OK □ Cancel 	ver

Chinese Language

• All text in the user interface can be translated

💪 Thermo Avantage								
文件 编辑 视图 窗口 帮助								
📐 分析 🛛 🕂 比较/叠加 🛝 修饰 🖵 剖析 ‡ 计算 🖀 图像	象 🥠 工具 🌽 角分辨XPS							
🦷 🏨 id <u>M</u> 🗼 😓 🥀 🤽 🌺								
峰添加 在范围游标之间添加峰								
✓ 处理视图 ×								
1 名称 峰位 FWHM Atomic BE eV %								
数据 谱峰 峰拟合 化学状态 (化学态)								
A .	В							
1 C1s Snap								
800								

Thermo

SCIENTIFIC

Chinese Language

- Translations currently in progress
- Shou Lin and Albert Ge are managing this

- 4	А	В
331	Data must be an AR Normalised or Atomic Percent type profile	数据必须是AR归一化或原子百分比型分布
332	The sum of the limits must exceed 100%	极限的数额必须超过100%
333	The data has no O1s peak	数据没有O1s谱峰
334	The special processing selected is incompatible with this data	选定的特殊处理与该数据不兼容
335	Thread Did Not Terminate.\nClose and restart application	线程未终止。\n关闭并重启应用程序
336	Ready	就绪
337	Running	运行
338	Waiting to Stop	等待停止
339	Stopped	已停止
340	Stop Failed	停止失败
341	Fitting stoichiometry	拟合化学计量比
342	Solving(%d)	解决(%d)

Summary

- Avantage is the complete XPS software package
 - Design & run complex experiments
 - Interpret and process all types of XPS data
 - Images
 - Depth Profiles
 - ARXPS
 - Point analyses
 - Automate your workflow
 - Full auto-analysis
 - Batch process recipe mode
 - Report your data
 - MS Office application
 - Data export

Any Questions?

